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Differences in equine spinal 
kinematics between straight line 
and circle in trot
A. Byström1*, A. M. Hardeman2,3, F. M. Serra Bragança3, L. Roepstorff1, J. H. Swagemakers2, 
P. R. van Weeren3 & A. Egenvall4

Work on curved tracks, e.g. on circles, is commonplace within all forms of horse training. Horse 
movements in circles are naturally asymmetric, including the load distribution between inner and 
outer limbs. Within equestrian dressage the horse is expected to bend the back laterally to follow the 
circle, but this has never been studied scientifically. In the current study 12 horses were measured 
(optical motion capture, 100 Hz) trotting on left and right circles and on the straight without rider (soft 
surface). Data from markers placed along the spine indicated increased lateral bending to the inside 
(e.g. left bending on the left circle) of the thoracolumbar back (difference left circle vs. straight − 3.75°; 
right circle + 3.61°) and the neck (left − 5.23°; right + 4.80° vs. straight). Lateral bending ROM increased 
on the circle (+ 0.87° and + 0.62°). Individual variation in straight-circle differences was evident, but 
each horse was generally consistent over multiple trials. Differences in back movements between 
circle and straight were generally small and may or may not be visible, but accompanying changes in 
muscle activity and limb movements may add to the visual impression.

When moving in circles in trot, the inside fore-and hind limbs take shorter strides (reduced pro- and retrac-
tion)1, are subjected to lower peak forces, and have longer stance duration than the outside  limbs2,3. To move 
on a circle, the horse needs to accelerate its body laterally in the direction of the bend, or otherwise the horse 
would continue forwards tangential to the circle. To achieve this, the horse needs to create ground reaction force 
towards the centre of the circle. The magnitude of the force required depends on the velocity of the horse (v) and 
the radius (r) of the circle (transverse force needed = m*v2/r). This, however, presents a balance challenge. If the 
resultant force vector between the vertical and lateral horizontal ground reaction forces points to the inside of the 
horse’s centre of mass, it creates a moment that acts to tip the horse over to the  outside1. To avoid this, the horse 
needs to shift its centre of mass towards the inside of the circle. The horse may do this by leaning into the circle. 
This strategy is well  described4–6, with the degree of body lean (approximated as stride mean pelvis roll) being 
proportional to the horse’s speed (squared) and inversely proportional to the radius of the circle, in accordance 
with the theory of  physics4. However, differences between predicted and observed body lean in individual horses 
suggest that the horse may use additional strategies to accomplish a lateral shift of its centre of mass.

Compared to a straight track, moving on a circle influences the horse’s vertical body movement symmetry, 
mimicking inside hind limb supporting lameness and inside forelimb  lameness7–9: the croup is relatively less 
lowered during stance of the inside hind limb, and the withers are lowered relatively less during inside forelimb 
(outside hind limb) stance. The hip hike (tuber coxae upward movement) on the outer side, concurrent with 
inside hind limb stance, is  reduced7; this may be (partly) related to changes in pelvic rotation, but that has not 
been investigated. Increased degree of body lean correlates with increases in all these vertical movement asym-
metries suggestive of inside limb  lameness4. With respect to head motion there is more individual  variation8,10. 
The head is most often lowered relatively less during the inside forelimb—outside hind limb diagonal stance but 
head movement asymmetry indicative of outside forelimb lameness is not  uncommon11. At group level, these 
asymmetries are reversed between left and right circles, but perfect mirroring is seldom the case in individual 
 horses11.

Riding on circles, training the horse to bend laterally in the direction of the circle, is an important part of 
the horse’s basic schooling and aims at achieving both flexibility and straightness/symmetry of the horse, as it 
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is perceived to stimulate the development of equal ability to bend to the left and to the right  side12. It has been 
shown that horses working correctly in a dressage frame under a rider lean less inward than expected based on the 
speed and circle radius, suggesting these horses were able to use other means to maintain  balance13. Conversely, 
horses awarded lower points for work quality tended to lean more than  predicted13. Evaluating the horse on left 
and right circles is an important part of the lameness examination. Studies have shown additive effects between 
the asymmetry induced by the circular movement, and asymmetries related to  lameness8,9,14 or to the rider per-
forming rising  trot15–17. Lame horses often show increased symmetry of body lean between left and right circles 
after successful diagnostic  analgesia14. Back pain is known to alter back movement on a straight  line18,19, but 
effects on circular motion have not been investigated. To further understand and correctly interpret the effects 
resulting from the interaction between moving in circles and all of the above-mentioned factors, it is important 
to understand more about how sound horses without a rider move in circles. For back movements, this includes 
normal stride ranges and movement characteristics, the degree of individual variation, and the normal range of 
asymmetries between left and right directions.

Several previous studies have described back movements in sound unridden horses moving straight on 
 treadmill20–22, or comparing treadmill and over-ground23. For circle only range of motion has been studied, 
which increased compared to straight line for both lateral bending and flexion-extension5,24. There are, however, 
no reports on the extent to which horses show (inside) lateroflexion of the vertebral column when moving in 
circles, nor if altered flexion–extension of the back plays a role in adaptation to circular movement. As follows, 
relationships between body lean and back movements have not been investigated. The aim of the present study 
was to describe both group and individual patterns (multiple measurements of each individual) in movements 
of the equine back and neck on the circle compared to the straight. The study focused on flexion–extension 
and lateral bending of the thoracolumbar back, pelvic rotations, head lateral position relative to the body (head 
swivel/cervical lateral bending), and tracking of the hindquarters relative to the forehand. The hypothesis was 
that ROM and/or stride mean for these kinematic variables would differ significantly compared to straight line, 
in adaptation to circular movement. It was further hypothesized that changes in flexion–extension and lateral 
bending of the thoracolumbar back would correlate with changes in pelvic rotations, cervical lateral bending, 
tracking of the hindquarters and/or body lean.

Materials and methods
Horses. Twelve privately owned horses were recruited to the study. All horses were deemed sound by their 
owners/trainers, performing well during training, and not known to have neck or back  dysfunction25. Age range 
was 5–15 years, mean 8.3 years, and body mass 450–652 kg (mean 551 kg). There were 11 European warmbloods 
and one Friesian, three geldings and nine mares. Competition level varied from not competing up to interme-
diate level in either show jumping or dressage. All experiments were performed in accordance with relevant 
guidelines and regulations. According to German law and regulations (Tierschutzgesetz §7), ethical approval is 
not required for non-invasive experiments where the studied animals are not subjected to any additional risks, 
above normal handling. Informed consent for the data collection was obtained from the horse owners prior to 
the study. Data from the same experiment have been used in two previous studies, investigating repeatability of 
vertical movement asymmetry  parameters25 and repeatability of ROM for back and pelvic  angles26, respectively.

Markers. Spherical soft markers of 25 mm diameter were attached with double-adhesive tape. Three markers 
on a strip were placed; on the forehead (the lowest marker was used in the further analysis), on the withers (one 
on the highest point, two markers 20 cm lateral on each side, the central marker was used) and on the pelvis (a 
T-shaped strip fitted to the tubera sacrale and the craniodorsal aspects of both tubera coxae). Single markers 
were placed on the dorsal spinous processes of the thoracolumbar vertebrae T12, T15, T18, L3 and L5, and the 
sacrum (S5). Marker placement is visualised in Supplementary Fig. S1. To enable placing of markers on the same 
location each day, hair was clipped from a small area at marker locations.

Data collection. Optical motion capture data were generated by Qualisys Motion Capture software  (QTMa 
version: 2.14, build: 3180). The measuring volume was covered by 28 high-speed infrared cameras (Oqus 700+a) 
set to a sampling frequency of 100 Hz. The total covered area was approximately 250  m2, height covered was at 
least 5 m. Calibration was done daily before the first measurement. The average calibration residual was 3.2 mm. 
A regular (25Hz) video camera (Sony HDR-CX330) was used to obtain synchronised video footage.

Kinematic registrations were made of the horses trotting in an indoor arena on a soft (sand and synthetic 
fibre) surface on the straight, and on left and right circles. Each trial included three measurements: straight line 
in hand (2 × 30 m) and lungeing on the left and then the right circle (each 25 s of data collection). This was done 
five times daily, on two consecutive days, totalling to 30 measurements per horse, 10 per path. Horses were also 
measured in straight line trot on hard (tarmac) surface and measurements were repeated twice on a third day 
after 30–55  days25, but these data were not included in the current study. An experienced equine veterinarian 
examined the horses on the day before the first measurement, found no clinical signs suggestive of back pain, and 
graded them as sound (‘fit to compete’) defined as less than 1 on a adapted version of the AAEP 0 to 5 lameness 
 scale27, after evaluating them in walk and trot on the straight, on soft surface. The lameness grades were defined 
as previously  described28: e.g. grade 0 (no lameness), and grade 1 (slight lameness in trot only). Half-grades 
were given if the lameness was perceived to be in-between grades. This lameness scale was routinely used by all 
veterinarians at the clinic where the study took place.

On each day, horses were first hand-walked for 5 minutes and lunged for 10 minutes as warm-up. There-
after, markers were placed, always by the same researcher (AH). Trials were then performed with five-minute 
intervals between the first two trials and ten-minute intervals between the following trials. Circle radius was 
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approximately 5 m (length of lunge-line standardized by a knot). Daily harrowing of the surface was done prior 
to the measurements. Measurements took place at each horse’s preferred speed and care was taken to maintain 
this speed consistently both within and between trials. Two handlers handled the horses, and each horse was 
always handled by the same handler.

In connection with each measurement, the optical motion capture data were manually inspected. Measure-
ments with poor marker tracking or insufficient number of collected strides (< 5 strides) were discarded.

Data analysis. Kinematic data were analysed using custom-written Matlab scripts. Stride segmentation was 
done based on the vertical maxima for the tubera sacrale marker, and pelvis roll to determine left vs right hind 
limb  stance29. For this purpose, data were filtered using a zero-lag Butterworth high-pass filter with a cut-off 
frequency of 70% of the stride  frequency30.

From stride-segmented (unfiltered) optical motion capture data, the following variables were calculated: 
Flexion-extension and lateral bending angles for the whole (thoracolumbar) back were determined between the 
markers at the highest point of the withers, T15 and tubera sacrale, in the vertical plane (‘seen from the horse’s 
side’) for flexion-extension and in the horizontal plane (‘seen from above’) for lateral bending. Additionally, angles 
between each set of three markers (withers—T12-T15; T12-T15-T18; etc., as listed in Table 1) were calculated 
in the same planes, to represent flexion-extension and lateral bending of the back segments. Flexion-extension 
angles were defined as zero if the three markers were level, positive for flexion of the back and negative for 
extension. Lateral bending angles were defined as zero when markers were aligned in the sagittal plane, positive 
for bending of the back to the right and negative for bending to the left. Supplementary Fig S2 illustrates the 
back angle calculations, showing the withers—T12-T15 flexion-extension angle as an example. Pelvis roll (axial 
rotation) was determined relative to the horizontal, using the two lateral (tuber coxae) pelvic markers. Pelvis 
pitch (rotation in the vertical plane) was calculated using the marker at the tubera sacrale and the average of the 
two lateral (tuber coxae) pelvic markers, and pelvis yaw (rotation in the horizontal plane) was calculated using 
the two lateral pelvic markers; both were expressed relative to a line between the withers and tubera sacrale 
markers. Pelvic rotations, including positive direction of these, are illustrated in Fig. 1. Stride range of motion 
and stride mean (illustrated in Fig. 2) were calculated for each stride for the above-mentioned variables. Stride 
mean pelvis roll was used to approximate body lean of the  horse4, and the vertical and horizontal planes were 
adjusted accordingly (tilted as much as the horse was leaning, based on the average in a moving window with the 
length of stride duration times sampling rate and centred on the data frame in question). This was done to avoid 
projection errors in (crosstalk between) lateral bending and flexion-extension angles by aligning the reference 
frame to the anatomical planes.

Speed was determined from the movement of the tubera sacrale marker in the horizontal plane. Body track-
ing, i.e. the orientation of the horse’s body (a line between the withers and tubera sacrale) relative to the direction 
of movement (determined from the speed vector), was calculated. Cervical lateral bending (head swivel) was 
calculated as the angle between the body and the neck (a line between the head marker and the withers marker). 
These angles are illustrated in Fig. 2. Head swivel is positive if the head is to the right of the body axis and body 
tracking angle is positive for ‘forehand to the right’—‘hind quarters to the left’ deviation.

Statistical analysis. Kinematic variables were scrutinised, both measurement time-series and stride-seg-
mented data. Boxplots of raw data and scatterplots of measurement mean data were used for description.

Mixed models were constructed (R version 3.6.1) to study differences between paths for back and pelvic 
kinematics, body tracking and head swivel. Speed was included in all models regardless if significant, to control 
for minor speed variations between measurements. Random effect in all models was measurement within horse. 
Alpha was set to 0.05 in all analyses. All presented models were made from stride-by-stride data. Both ROM and 
stride means were analysed for back and pelvic variables, whereas for head swivel and body tracking and speed 
only stride means were analysed. R packages that were used included: lme4, lmerTest and emmeans.

Before analysis, variables were plotted in quantile-quantile plots. Variables that did clearly not conform to 
normality were transformed along the ladder of powers to find the optimal transformation. These variables (ROM 
for withers-T12-T15 lateral bending and flexion-extension, ROM for T15-T18-L3 lateral bending and ROM for 
pelvis roll) were then analysed both transformed and untransformed. As the conclusions from the models were 
similar in both transformed and untransformed formats, the untransformed versions were used. Two categories 
of models were made, addressing the first and the second hypothesis of the study, respectively:

Comparison between straight line and circles: these models included mean and ROM for back angles and 
pelvic rotations as dependent variables, and path and speed and their interaction as fixed effects. Least square 
means for the three different paths were evaluated at speed grand mean (across all horses and measurements). 
Multiple comparisons of least square means within each model were adjusted for using the false discovery rate 
method (in emmeans).

Correlations between back variables and the other studied variables: these models included stride mean and 
ROM for whole back lateral bending and flexion-extension as dependent variables. The independent variables 
were pelvic rotations, speed, head swivel and body tracking, and speed. In general, mean and ROM variables 
were evaluated for mean and ROM dependent variables, respectively, with the exception of speed, and stride 
mean head swivel and body tracking, which were entered into all models. When flexion-extension mean or ROM 
was modelled, head swivel and body tracking were entered as absolute values. All tested variables were plotted 
versus the dependent variable in order to rule out modality or exponential relationships. These models were 
made separately for each path, one for straight line data, one for left circle data, and so on. This was in order to 
verify or refute consistency over analyses. During preliminary analysis, using the Akaike information criterion, it 
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was found that essentially all independent variables contributed in these models. Because of this, all fixed effects 
were kept, and no model reduction was made.

Results
The 12 horses contributed 8073 strides in total to the dataset (with 1338/3270/3465 strides respectively, from the 
straight line and left/right circles). The strides emanated from a total of 355 measurements across the 12 horses. 5 
of the 360 measurements obtained had to be discarded, leaving a minimum of eight measurements per horse and 
path (two horses lost one straight-line measurement each and one horse lost two straight-line measurements and 
one measurement on the left circle). The number of strides per measurement included in the statistical analyses 
varied between 4 and 20 for straight line (median 11), left circle 6–42 (median 28) and right circle 18–41 (median 
29). Speed was higher on a straight line, 3.73 (SE 0.04) m/s compared to on left/right circles, 3.31 (SE 0.04) m/s 

Table 1.  Least square means estimates (Est) and standard errors (SE) by path, and estimated differences 
between paths including P-values (P), for stride mean flexion–extension (FE) and lateral bending (LB) 
variables (all in degrees).  Each model also contained a speed*path fixed effect (supplement 1) and included 
between 8055 and 8073 observations (strides) from 12 horses.

Independent variables

Straight Left Right

Est SE Est SE Est SE

FE withers-T15-tuber sacrale − 17.6 0.64 − 17.7 0.64 − 17.7 0.64

FE withers-T12-T15 − 15.3 0.74 − 15.3 0.74 − 15.3 0.74

FE T12-T15-T18 − 3.7 0.50 − 3.7 0.50 − 3.7 0.50

FE T15-T18-L3 − 3.5 0.34 − 3.5 0.34 − 3.5 0.34

FE T18-L3-L5 − 0.3 0.66 − 0.4 0.66 − 0.5 0.66

FE L3-L5-tuber sacrale 0.4 0.81 0.3 0.81 0.3 0.81

FE L5-tuber sacrale-S5 21.5 0.78 20.7 0.78 20.9 0.78

LB withers-T15-tuber sacrale − 0.1 0.42 − 3.9 0.42 3.5 0.42

LB withers-T12-T15 − 0.7 0.69 − 2.1 0.68 0.8 0.68

LB T12-T15-T18 − 0.2 0.67 − 1.3 0.67 0.8 0.67

LB T15-T18-L3 1.7 0.60 0.6 0.60 2.7 0.60

LB T18-L3-L5 − 0.1 0.46 − 1.2 0.46 0.9 0.46

LB L3-L5-tuber sacrale − 1.9 0.78 − 2.2 0.78 − 1.7 0.78

LB L5-tuber sacrale-S5 2.9 0.73 2.7 0.73 3.2 0.73

Pelvis roll − 1.0 0.35 − 13.4 0.35 11.7 0.35

Pelvis pitch 36.9 1.27 37.6 1.27 37.9 1.27

Pelvis yaw 2.2 0.56 − 0.2 0.56 4.5 0.56

Head swivel − 1.5 0.87 − 6.7 0.85 3.3 0.85

Body tracking 0.1 0.33 2.4 0.33 − 2.5 0.33

Straight-left Straight-right Left–right

Est SE P Est SE P Est SE P

FE withers-T15-tuber sacrale 0.06 0.03 0.07 0.10 0.03 0.004 0.04 0.02 0.07

FE withers-T12-T15 − 0.02 0.04 0.77 0.01 0.04 0.77 0.04 0.03 0.71

FE T12-T15-T18 − 0.02 0.01 0.07 − 0.06 0.01  < 0.0001 − 0.04 0.01  < 0.0001

FE T15-T18-L3 0.05 0.01  < 0.0001 0.04 0.01  < 0.0001 − 0.01 0.01 0.12

FE T18-L3-L5 0.09 0.01  < 0.0001 0.16 0.01  < 0.0001 0.08 0.01  < 0.0001

FE L3-L5-tuber sacrale 0.05 0.01  < 0.0001 0.07 0.01  < 0.0001 0.02 0.01 0.001

FE L5-tuber sacrale-S5 0.82 0.03  < 0.0001 0.64 0.03  < 0.0001 − 0.18 0.02  < 0.0001

LB withers-T15-tuber sacrale 3.75 0.05  < 0.0001 − 3.61 0.04  < 0.0001 − 7.37 0.03  < 0.0001

LB withers-T12-T15 1.39 0.04  < 0.0001 − 1.48 0.04  < 0.0001 − 2.87 0.03  < 0.0001

LB T12-T15-T18 1.08 0.02  < 0.0001 − 1.05 0.02  < 0.0001 − 2.13 0.01  < 0.0001

LB T15-T18-L3 1.11 0.01  < 0.0001 − 0.99 0.01  < 0.0001 − 2.10 0.01  < 0.0001

LB T18-L3-L5 1.10 0.02  < 0.0001 − 1.05 0.02  < 0.0001 − 2.15 0.01  < 0.0001

LB L3-L5-tuber sacrale 0.34 0.01  < 0.0001 − 0.22 0.01  < 0.0001 − 0.56 0.01  < 0.0001

LB L5-tuber sacrale-S5 0.22 0.01  < 0.0001 − 0.24 0.01  < 0.0001 − 0.45 0.01  < 0.0001

Pelvis roll 12.36 0.07  < 0.0001 − 12.72 0.07  < 0.0001 − 25.08 0.05  < 0.0001

Pelvis pitch − 0.67 0.03  < 0.0001 − 0.95 0.03  < 0.0001 − 0.29 0.02  < 0.0001

Pelvis yaw 2.46 0.03  < 0.0001 − 2.22 0.03  < 0.0001 − 4.68 0.02  < 0.0001

Head swivel 5.23 0.29  < 0.0001 − 4.80 0.29  < 0.0001 − 10.03 0.21  < 0.0001

Body tracking − 2.30 0.08  < 0.0001 2.62 0.08  < 0.0001 4.92 0.05  < 0.0001
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and 3.34 (SE 0.04) m/s, and left and right circles also differed significantly (p < 0.0001 for the three two-way 
comparisons). Across all horses, circle radius varied between 4.8 and 5.2 m for the left circle and for the right 
circle between 4.8 and 5.3 m. Examples of stride curves for analysed variables are displayed in Fig. 3. Individual 
variation is illustrated in Figs. 4, 5 and 6.

Table 1 shows least square stride mean values and the estimated differences between straight line and left and 
right circle. Table 2 shows stride ROM and the differences in ROM between straight line, left circle and right 
circle. In both tables, a positive difference indicates a smaller value for circle compared to straight line. There were 
significant differences between straight line and left/right circles for most variables, and between left and right 
circles for many variables. Estimated differences were generally small. Estimates for the speed-path interaction 
can be found in Supplementary Table S1.

Straight-line movement. For stride mean flexion-extension (Table  1), the whole back angle (between 
withers, T15 and the centre point between the two tubera sacrale) on the straight line was − 17.6° (minus sign 
indicating extension, i.e. T15 is below withers and sacrum). The least square means for the segment angles range 
from extension in the cranial thoracic back (− 15.3°, illustrated in Supplementary Fig S2) towards neutral (hori-
zontal alignment of the markers) at the L3 segment (− 0.34°), to a slight flexion at L5 (0.40°) and flexion at the 
lumbosacral junction (21.5°). Flexion-extension ROM for the whole back (Table 2) was 5.42° on the straight line. 
The highest ROM for flexion-extension of the back segments was found at T12 (4.28°).

Stride mean lateral bending (Table 1) on the straight line ranged between − 1.90° and 2.93° for the segments 
and the whole back. These figures must be interpreted with caution, due to possible slight off-midline placement 
of markers (cf. Fig. 5). Lateral bending ROM for the whole back was 7.35°. For the segments, the highest ROM 
was found for the T12 segment (8.18°). Across all horses, cervical lateral bending (head swivel) was slightly to 
the left on the straight line (least square mean − 1.50°). Stride mean pelvis roll (body lean) was almost zero. Pelvis 

Figure 1.  Illustration of pelvic rotations, roll (blue), pitch (red) and yaw (green). Cranial is to the left (blue 
arrow).

Figure 2.  The left graph illustrates how stride mean and range of motion (ROM) were calculated, shown on an 
example of a lateral bending stride curve (blue line indicates the mean, shaded area the standard deviation). The 
right graph illustrates the variables a ‘Head swivel’ and b ‘Body tracking’, with angles indicated on the side where 
they are positive, e.g. head placed to the right of the long axis of the body.
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pitch least square mean was 36.9° (indicating an upward slope from the midpoint between the two tubera coxae 
to the tuber sacrale). Stride mean pelvis yaw showed positive rotation (‘tail towards the right’) on the straight 
line (2.24°). Ranges of motion for pelvis roll, pitch and yaw were 9.49°, 7.77° and 4.64° (Table 2).

The body tracking angle indicated slight tracking of the hindquarters to the right (or forehand to the left) 
on the straight (0.13°). Combining all results related to horse straightness, the average horse of the study group 
showed left cervical bending, tracking of the hindquarters to the right, and ‘tail to the right’ yaw rotation of the 
pelvis relative to the long axis of the body on the straight line.

Changes in movements on the circle compared to a straight line. Stride mean flexion-extension 
(Table 1) indicates that the whole back was slightly more extended on the circle compared to the straight line 
(estimated differences comparing to straight: left 0.06°; right 0.10°). The same was true for the segments except 
for T15; statistically significant but small differences were found, with the largest differences at the lumbosacral 
junction (left 0.82° right 0.64°).

For stride mean lateral bending, the whole back (estimated differences left 3.75°; right − 3.61°), as well as all 
segments, showed left bending on the left circle and right bending on the right circle. The contribution from 
each of the segments to the whole back lateral bending was approximately equal over the more cranial segments, 
T12-L3 (estimated differences left 1.1° to 1.4°; right − 1.5° to − 1.0°, compared to straight). For the most caudal 
segments (L5 and sacral segments), differences were smaller (left 0.22° to 0.34°; right − 0.24° to − 0.22°, compared 
to straight). Cervical lateral bending to the inside of the circle was symmetric compared to the straight line for 
left and right circles (differences; left 5.23°; right − 4.80°), but since horses showed left lateral bending on the 
straight, least square means suggest relatively more bending to the inside on the left circle (least square means 
− 6.73° vs. 3.30°). Body tracking showed about the same estimated ‘forehand in—hindquarters out’ deviation 
with hindquarters towards the left on the left circle and to the right on the right circle (differences left − 2.30°; 
right 2.62°, compared to straight).

Differences between circle and straight in ROM were small. For flexion-extension there was no consistent 
direction of change (Table 2), but estimate signs are generally consistent for the same angle/segment between 
left and right circles. For lateral bending significant differences indicated increased ROM on the circle. For the 
whole back the estimated differences were − 0.87° and − 0.62° compared to the straight (negative sign indicates 
higher values on the circles).

Stride mean pelvis roll showed approximately the same estimated differences, with roll to the left on the left 
circle, and to the right on the right circle (12.4° and 12.7°), compared to almost zero degrees on the straight line 
(Table 1). For pelvis pitch, differences to straight were − 0.67° and − 0.95°, indicating slightly more extension. 
Stride mean pelvis yaw was (tail) to the inside compared to straight, to the right on the right circle (difference 
− 2.22°) and to the left on the left circle (difference 2.46°). Pelvis roll ROM decreased slightly on the circle, by 
0.14°–0.15°, whereas pelvis pitch and yaw ROM increased between − 0.31° and − 0.69° (Table 2).

Figure 3.  Stride curves (normalized to 0–100% of the stride) for whole back flexion–extension and lateral 
bending, and pelvis pitch and yaw, for one horse (horse 12). Lines indicate the mean and shaded area the 
standard deviation, for left circle (red), right circle (blue) and straight line (green).
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Relationships between back movements and other variables. Whole back lateral bending stride 
mean showed the strongest correlation to stride mean pelvis yaw (Supplementary Table S2). Pelvis yaw estimates 
ranged between 1.1° to 1.3° across all three paths, which suggests that each degree of increased yaw to one side 
is associated with slightly more than 1° increase in lateral bending to the same side. All other variables tested 
(stride mean pelvis roll and pitch, head swivel, body tracking and speed) were statistically significant, except for 
mean pelvis pitch for the left circle (p = 0.46) but estimates for variables other than speed were below 0.1°. Esti-
mates for these latter variables, including speed, remained small or proved unstable when entering or removing 

Figure 4.  Measurement means for stride mean for whole back (WB) flexion–extension (FE) and lateral bending 
(LB), pelvis (P) roll, pitch and yaw, head swivel and body tracking. The plots contain data from 12 horses on 
three paths (red = left, blue = right, green = straight line), studied during two different days for five occasions each 
day (n = 355 measurements in total).
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variables in the models. Accordingly, except for pelvis yaw, estimates should be interpreted with caution. For 
the remaining whole back variables (lateral bending ROM and flexion-extension stride mean and ROM), model 
estimates proved to be generally unstable when adding or removing (independent) variables, and/or were incon-
sistent between left and right circles (Supplementary Table S2). A possible reason is that only stride mean lateral 
bending showed substantial difference between circle and straight line. Scatterplots of whole back variables vs. 
the variable with the strongest association in each model are found in Supplementary Fig. S3.

Discussion
The current study explores adaptations in horse body movements when trotting in circles. In line with the 
hypothesis, the current study found significant differences between circles and straight line for most of the 
studied variables. The findings included lateral bending of the neck and thoracolumbar back to the inside of the 
circle, along with yaw of the pelvis turning the tail towards the inside on the circles. These changes are towards 
alignment between the horse’s vertical column and the circular track, in accordance with equestrian theory. 
However, all differences found were small and may or may not be visible for a human observer. Cervical lateral 
bending in the direction of motion (left − 5.23°; right + 4.80° vs. straight) is likely to be visible. Lateral bending 
of the back (≤ 3.6°–3.8°) was small for each segment but may be visible for the back as a whole. For stride mean 

Table 2.  Least square means estimates (Est) and standard errors (SE) by path, and estimated differences 
between paths including P-values (P), for stride range of motion (ROM) flexion–extension (FE) and lateral 
bending (LB) variables (all in degrees). Each model also contained a speed*path fixed effect (supplement 1) 
and included between 8055 and 8073 observations (strides) from 12 horses.

Independent variables

Straight Left Right

Est SE Est SE Est SE

FE withers-T15-tuber sacrale 5.4 0.19 5.6 0.19 5.5 0.19

FE withers-T12-T15 4.3 0.40 4.3 0.40 4.3 0.40

FE T12-T15-T18 2.6 0.22 2.3 0.22 2.3 0.22

FE T15-T18-L3 2.5 0.10 2.3 0.10 2.6 0.10

FE T18-L3-L5 2.6 0.14 2.5 0.14 2.5 0.14

FE L3-L5-tuber sacrale 2.7 0.23 2.8 0.23 2.8 0.23

FE L5-tuber sacrale-S5 3.6 0.12 3.8 0.12 3.7 0.12

LB withers-T15-tuber sacrale 7.4 0.37 8.2 0.37 8.0 0.37

LB withers-T12-T15 8.2 1.00 8.8 1.00 8.6 1.00

LB T12-T15-T18 4.9 0.50 5.3 0.50 5.0 0.50

LB T15-T18-L3 3.8 0.50 4.1 0.50 4.0 0.50

LB T18-L3-L5 4.0 0.26 4.3 0.26 4.4 0.26

LB L3-L5-tuber sacrale 4.3 0.34 4.5 0.34 4.8 0.34

LB L5-tuber sacrale-S5 4.7 0.24 4.9 0.24 4.8 0.24

Pelvis roll 9.5 0.56 9.4 0.56 9.3 0.56

Pelvis pitch 7.8 0.36 8.1 0.36 8.3 0.36

Pelvis yaw 4.6 0.30 5.2 0.30 5.3 0.30

Straight-left Straight-right Left–right

Est SE P Est SE P Est SE P

FE withers-T15-tuber sacrale − 0.18 0.025  < 0.0001 − 0.03 0.025 0.25 0.15 0.018  < 0.0001

FE withers-T12-T15 − 0.05 0.027 0.13 − 0.01 0.027 0.84 0.04 0.019 0.09

FE T12-T15-T18 0.22 0.018  < 0.0001 0.23 0.018  < 0.0001 0.01 0.013 0.65

FE T15-T18-L3 0.25 0.018  < 0.0001 − 0.09 0.018  < 0.0001 − 0.34 0.013  < 0.0001

FE T18-L3-L5 0.05 0.016 0.006 0.05 0.016 0.006 0.00 0.012 0.87

FE L3-L5-tuber sacrale − 0.07 0.018 0.0003 − 0.09 0.018  < 0.0001 − 0.02 0.013 0.05

FE L5-tuber sacrale-S5 − 0.22 0.023  < 0.0001 − 0.08 0.023 0.001 0.15 0.016  < 0.0001

LB withers-T15-tuber sacrale − 0.87 0.038  < 0.0001 − 0.62 0.037  < 0.0001 0.25 0.027  < 0.0001

LB withers-T12-T15 − 0.65 0.045  < 0.0001 − 0.42 0.045  < 0.0001 0.23 0.032  < 0.0001

LB T12-T15-T18 − 0.38 0.038  < 0.0001 − 0.15 0.037 0.0001 0.23 0.027  < 0.0001

LB T15-T18-L3 − 0.36 0.028  < 0.0001 − 0.25 0.027  < 0.0001 0.11 0.020  < 0.0001

LB T18-L3-L5 − 0.27 0.028  < 0.0001 − 0.34 0.027  < 0.0001 − 0.07 0.020 0.0004

LB L3-L5-tuber sacrale − 0.21 0.025  < 0.0001 − 0.50 0.025  < 0.0001 − 0.28 0.018  < 0.0001

LB L5-tuber sacrale-S5 − 0.20 0.026  < 0.0001 − 0.11 0.026  < 0.0001 0.09 0.018  < 0.0001

Pelvis roll 0.14 0.065 0.05 0.15 0.064 0.05 0.01 0.046 0.87

Pelvis pitch − 0.31 0.032  < 0.0001 − 0.53 0.032  < 0.0001 − 0.21 0.023  < 0.0001

Pelvis yaw − 0.53 0.027  < 0.0001 − 0.69 0.026  < 0.0001 − 0.16 0.019  < 0.0001
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pelvis yaw, the estimated differences compared to straight were also small (left 2.46°; right − 2.22° vs. straight). 
In equestrian literature, lateral bending of the trunk is often referred to and is a core part of the training goals, 
even though there are some equestrian authors that dispute the horse’s ability to bend laterally other than in the 
cervical  spine31. It is unclear whether these observations that are reported in equestrian literature, are based on 
actual lateral bending of the back, or reflect the concurrent changes in limb  movement1 and muscle  activity32 
when moving in circles, e.g. shorter stride length for inside limbs compared to outside limbs. The slight increase 
in extension of the back and differences in back and pelvic ROM are unlikely to be appreciable with an unaided 

Figure 5.  Measurement mean data plotted by horse for selected stride range of motion (ROM) variables for 
whole back (WB) flexion–extension (FE) and lateral bending (LB), pelvis (P) roll, pitch and yaw, and speed. The 
plots contain data from 12 horses on three paths (red = left, blue = right, green = straight line), studied during two 
different days for five occasions each day (n = 355 measurements in total).
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eye and can be argued to be too small to be biologically meaningful as single findings. The increase in body lean 
found on the circle compared to straight line is likely to be visible (12°–13°, Table 1).

Previous studies on back movement in trot include treadmill studies using optical motion  capture20–22, as well 
as overground studies using an inertial measurement unit (IMU) set-up that has been validated against opti-
cal motion  capture33. These studies have quantified thoracolumbar segment angles relative to the room; angles 
equivalent to roll, pitch, and yaw, but were referred to as axial rotation, flexion-extension, and lateral bending, 
respectively. This means that those studies looked at the amount of rotation of a given anatomical point, whereas 
the present study quantified angles spanned by three different anatomical points, rendering the results only 
approximately comparable. Back ROM has been compared between straight line and circle using  IMUs5,24. It was 
found that ROM generally increased on the circle. For flexion-extension increases were 1° to 2°, and for lateral 
bending ROM increases of about 20° were seen on the  circle5. The increases in lateral bending likely reflect the 
turning motion of the horse during each stride, rather than changes in movement within the back. In the present 
study, increases in lateral bending ROM were much smaller (left: 0.87° and right: 0.62°), though still significant. 
Comparing the results for straight line back ROM in the current study to previous treadmill  studies20–22, those 
studies found slightly higher ROM, but despite differences in how angles were calculated the relative distribu-
tion over different anatomical locations was similar: for both flexion-extension and lateral bending the highest 
values were found for the most cranial segments, decreasing towards the thoracolumbar junction and slightly 
increasing again towards the lumbosacral joint.

Comparing the results of the current study to cadaver studies, the movement contributions of the different 
segments look quite different for lateral bending, but more similar for flexion extension. Flexion-extension 
ROM was found to be highest between T17 and L1 (thoracolumbar junction) and to decreased both cranially 
and caudally, while still remaining fairly similar to the most moveable segment, 2°–4° of movement between 
adjacent  vertebrae34,35. This is in line with the current results of 3°–4° over several vertebrae. Lateral bending 
ROM was found to be greatest in the caudal half of the thoracic spine (maximum 11° at T11) and to decreased 
towards the lumbar spine (on average 3°)35. This can be attributed to the sagittal orientation of the articular fac-
ets and the intertransverse  joints36. In the current study, ROM was relatively similar between the thoracic and 
lumbar back, 4°–8° for individual segments. For the thoracic back, this is considerably lower compared to the 
cadaveric  study35, considering that we measured the combined movement over several vertebrae. It is plausible 
that the horse did not use its maximum mobility of the back to trot around the 10 m circle. The relatively higher 
ROM for the lumbar back in this study may to some extent be related to projection errors originating from axial 
rotation of the back during the  stride37. A previous study that validated thoracolumbar segment angles derived 
from skin markers against bone-fixated markers using optical motion capture reported axial rotation to inter-
fere only with lateral bending, not flexion-extension angles, and only in the caudal thoracic and cranial lumbar 
areas. It was though concluded that these errors are practically negligible for  trot37, angles for all thoracolumbar 
segments were deemed valid. In that study, data collection was performed on a treadmill, i.e. in straight line. In 
the current study the reference frame for the thoracolumbar angles was corrected for horse body lean, aiming 
to ensure equivalent calculations for straight line and circles.

Contrary to our hypothesis, changes in flexion-extension and lateral bending of the thoracolumbar back 
between straight line and circles were not strongly correlated to changes in pelvic rotations, cervical lateral bend-
ing, body tracking or body lean. The only consistent correlation found was between stride mean pelvis yaw and 
lateral bending. This relationship suggests that the thoracolumbar and lumbosacral back accommodate to the 

Figure 6.  Mean values per measurement for whole back (WB) stride mean lateral bending (LB) for selected 
segment angles in 6 horses (10 trials per horse) of the 12 horses included in the study. Each horse is represented 
by a colour.
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bend of the circle in a coordinated manner. In the present study, body lean (stride mean pelvis roll) had only a 
weak association with the degree of lateral bending to the inside of the circle. This would suggest that increased 
lateral bending may not be a reason why well-ridden horses lean less into the  circle5. On the other hand, an 
association may still be present within the same horse over a period of schooling.

In this group of 12 horses, there were several statistically significant, but small, differences between left and 
right circles. The clinical or biological significance of these is uncertain. A number of previous studies have found 
various differences between left and right circles: In one study, horses leaned less than expected on right circles, 
and more than expected on left  circles4. In another study, left-right differences in head and pelvis vertical maxima 
increased significantly with speed on the left but not the right circle in a group of sound to mildly lame  horses38. 
Differences in absolute vertical movement symmetry have also been  found7,10. These findings support that horses 
may adapt differently to moving on left versus right circles. Reasons for this can be laterality, painful conditions, 
training and/or  habit39. However, study designs with non-randomised left-right order should also be considered. 
It would be interesting to investigate correlations between back movement asymmetries and vertical movement 
asymmetries. The results of the current study indicate that it would then be necessary to correct or control back 
angles for asymmetries in marker placement, e.g. analyse left-right circle differences. From marker-based angles 
alone it is impossible to know at what value the horse’s back movements are truly symmetrical, considering that 
in the current study markers were always placed by the same person and great care was taken in placing them 
correctly. Investigating links between movement asymmetries in various parts of the horse’s body is generally an 
interesting topic that warrants further study, preferably including larger groups of horses.

In the group of horses currently studied, individual variation in adaptations to circular movement, and indi-
vidual variation in left-right differences are evident in Figs. 4, 5 and 6. Both the offset between days and non-zero 
values on the straight can reflect inconsistency or off-midline marker placement or anatomical asymmetries but 
may also be true asymmetries in the horse’s movements. For whole back stride mean lateral bending, all horses 
showed left bending on the left and right bending on the right circle, but some horses showed varying amounts 
of bending per trial/measurement (horse 5, 8 and 11), which causes overlap between circles and straight line 
(Fig. 4). A similar pattern is evident for pelvis yaw, e.g. for horse 3 and 10. Further, most horses showed an off-
set to the right in yaw (straight line/black dots above zero in Fig. 4). This is also evident from the least square 
means in Table 2. For pelvis roll, there is a clear difference between the movement directions for all horses. For 
cervical lateral bending, all horses except horse 6 and 8 showed left bending on the left circle and right on the 
right. Across trials, some horses showed more variation in cervical lateral bending than the others, e.g. horse 1. 
Overall, horses were consistent with regard to the difference between circle and straight, over both days, even if 
offsets between days can be clearly seen in some parameters (Figs. 4, 5, 6).

In a previous study using data from the same experiment, repeatability of ROM for back and pelvic angles, 
and for stride mean head swivel and body tracking, was  investigated26. Repeatability was found to be good to 
fair for whole back and pelvic angles, but not as good for segment angles. The latter are more sensitive to small 
variations in marker placement, due to the short distances between markers. Another possible factor is measure-
ment error. The average residual after interpolation of the position of the markers, when several cameras track the 
same marker, was 3.2 mm in both this and the previous study. At maximum, this corresponds to 1.2° error for a 
segment of the length 0.15 m (relevant for back segments) and 0.4° for a segment of the length 0.5 m (relevant 
for all other variables) for a single data frame. Since marker position estimation errors can be expected to be 
randomly distributed in both space and time, the effective angle error across a number of strides will be much 
smaller and likely less important compared to variations in marker placement. In the current study, there was 
considerable variation between horses and for stride mean angles also between the two measurement days, yet 
the overall trends for circle versus straight differences were comparably systematic and consistent. We therefore 
expect that the direction of changes will be consistent if the study would be repeated, whereas the exact figures 
should be interpreted with more caution, especially for the back segments.

A limitation of the study is the fairly small group of horses, but a benefit is that these horses were measured 
multiple times. The order of left and right circles was not randomised, but short intervals between repeats likely 
reduced the influence of left-right circle order. Skin markers are susceptible to skin  displacement40. However, 
pairwise comparisons between conditions, e.g. straight lines and circles, are less affected by this problem. The 
reference frame for the thoracolumbar angles was corrected for horse body lean, but on a stride mean basis. 
This minimizes the risk of erroneous differences between straight line and circles. However, there is currently no 
validated method available to determine axial rotation of the thoracolumbar back accurately for each segment 
using skin markers, which would have been needed to eliminate this as a source of error. Horse owners were 
asked retrospectively to complete a questionnaire with questions based on descriptions of sidedness in equestrian 
literature. Unfortunately, comprehensive interpretation of the answers proved difficult, and we therefore refrained 
from further analysis. For future research, including walk and canter would be of great interest as those gaits are 
clinically important to assess spinal mobility, in addition to the trot. Besides, it would be interesting to repeat 
the study under tack. To overcome practical issues in marker placement in combination with a saddle and rider, 
this could be done with  IMUs19. The current study evaluated circle-induced changes on whole-stride level, and 
further work is needed to understand back movements in greater temporal resolution, possibly combining several 
variables using machine learning methods, as is now being applied in human gait  analysis41.

Conclusion
Though this is considered a fact within equestrian dressage, the current study is the first to document that horses 
show increased lateral bending of the back to the inside when moving in circles. The same is true for the neck. 
Individual variation was evident, but each horse was generally consistent in its back motion pattern over multiple 
trials and consecutive days. This study adds to the biomechanical understanding of the equine back, knowledge 
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that is useful in clinical assessment of back (dys)function. The addition of walk and canter and measurements 
under tack would complete this dataset and fill in further knowledge gaps within equine biomechanics and 
equestrianism.

Data availability
The datasets generated during and/or analysed during the current study are available in the Figshare repository, 
https:// doi. org/ 10. 6084/ m9. figsh are. 14371 718.
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